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Abstract

This is Part II of a two!part paper which analyses the re!polarization of elastic waves at a frictional contact
interface between two solids[ The re!polarization of SH waves was solved in Part I by the use of the Fourier
analysis[ Here\ in Part II\ we consider the re!polarization of P or SV waves[ It is assumed that the two solids
are pressed together and\ at the same time\ loaded by anti!plane and in!plane shearing traction[ If the
incident wave is su.ciently strong\ localized separation and slip may take place at the interface[ As a result\
the incident in!plane wave is re!polarized at the interface so that the anti!plane waves "SH waves# are
induced[ Using the method similar to that of Part I and considering the boundary conditions involving
separation and slip\ we manage to reduce the problem to a set of algebraic equations coupled with simple
integral equations[ An iterative method is developed based on the solution to the perfectly bonded interface[
The locations and sizes of the separation and slip zones\ the interface traction\ the slip velocities\ the global
sliding velocities and the energy dissipation and partition are displayed for the case of two identical materials[
It is found that the separation zones and the gaps are independent of the induced waves[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

The re~ection and refraction of elastic waves at an interface between two solids is a fundamental
topic in many _elds such as seismology\ geophysics\ earthquake engineering\ non!destructive
evaluation\ etc[ This problem is customarily treated on the basis that the interface is perfectly
bonded[ Such an interface can transmit both tensile and compressive traction without discontinuity
in displacements[ The associated problem is a linear one and has been studied extensively[ An
opposite case is the contact interface which cannot transmit tensile traction[ If the waves are strong
enough\ the local slip and separation may take place at the interface[ Examples of such situations
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may include the propagation of seismic waves through a pre!existing fault surface and the wave
propagation in mechanical systems with bolted or press!_t connections[ In Part I of this two!part
paper "Wang et al[\ 0887#\ we gave a brief review of the previously published papers concerning
the interaction of elastic waves with a contact interface[ Among them\ the works by Comninou
and Dundurs "see the references listed in Part I# are most noticeable[ It is noted that they treated
the in!plane and anti!plane wave motion separately[ However we argue that SH and P:SV waves
may be coupled with each other at a frictional contact interface in some cases[ A new and interesting
phenomenon*the re!polarization of SH waves at a frictional contact interface was examined in
Part I by the present authors[ The induced in!plane waves and their coupling to SH waves were
discussed[ The results show that\ although the induced waves carry a small amount of energy\ its
e}ects on local slip and interface traction cannot be neglected[ Here in Part II\ a similar approach
will be used to deal with the re!polarization of P or SV waves[ It is noted that an incident in!plane
wave\ if strong enough\ may cause the localized separation of the interface\ while an incident anti!
plane wave can not[ Therefore the present problem is more complex than that considered in Part
I[ The solution of the problem should be of interest to scientists working with laboratory and _eld
seismic data or to those working with non!destructive evaluation[

1[ Problem formulation

The problem considered in this paper is shown in Fig[ 0[ Two elastic half!spaces are forced
together by the applied pressure p9 and\ at the same time\ loaded by the in!plane shearing traction
q9 as well as the anti!plane shearing traction t9[ The Couloumb frictional model is adopted along
the interface with static and kinetic friction coe.cients as fs and fk[ An incident harmonic P or SV
wave "n � 9# strikes the interface under the angle u9\ and is re~ected and refracted at the interface[
If the incident wave is strong enough\ the interface will separate and slip locally[ Consequently\
the applied anti!plane shearing traction t9 may lead to the anti!plane slip of the interface\ and thus
induces the SH waves in two component materials[ The notation we follow is the same as that in
Part I[ The indices n � 0\ 1\ 2\ 3\ which may appear in su.x or a.x positions are to distinguish
between the re~ected and refracted P and SV waves\ and n � 1?\ 3? to distinguish between the
induced SH waves in the lower and upper half space[ The displacements associated with the
di}erent waves are taken as the real part of the typical form

u"n# � Cnd
"n# exp "iyn#\ n � 9\ 0\ 1\ 1?\ 2\ 3\ 3?\ "0#

with

yn � knðx = p"n#−cntŁ\ "1#

where kn is the corresponding wave number^ d"n# and p"n# are\ respectively\ the unit vectors de_ning
the directions of motion and propagation[ For P!wave incidence\ c9 � cL and

d"9# � p"9# � " sin u9\ cos u9\ 9#\ "2#

while for SV!wave incidence\ c9 � cT and

d"9# � "−cos u9\ sin u9\ 9#\ p"9# � " sin u9\ cos u9\9#[ "3#
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Fig[ 0[ Interaction of a P or SV wave with a frictional contact interface[

Other d"n# and p"n# "n � 9# may be found in the Appendix of Part I[ The amplitude Cn is generally
complex[

Snell|s law which still holds for the unilateral interface "Comninou and Dundurs\ 0868^ Wang
et al[\ 0887# leads to

h9 � h0 � h1 � h2 � h3,hPSV\ h1? � h3?,hSH "4#

where hn � yn=x1 � 9[ Since the SH waves are induced by the in!plane waves\ it is reasonable to assert
"Wang et al[\ 0887#

hPSV � hSH,h[ "5#

Then it follows from eqns "4# and "5# that u1? � u1\ u3? � u3\ and

sin u9

c9

�
sin u0

cL

�
sin u1

cT

�
sin u2

c¹L

�
sin u3

c¹T

\ "6#

k9c9 � k0cL � k1cT � k2c¹L � k3c¹T � v[ "7#

The present analysis will be limited to the case of sub!critical angle incidence\ that is\ u9 should
satisfy
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u9 ³ ucr � min "sin−0 "c9:cL#\ sin−0 "c9:c¹L##[ "8#

Because of the periodicity of the problem in h\ only one representative interval\ say −p ³ h ³ p\
need to be considered[ Denote the normal traction at the interface by N"h#\ the in!plane and anti!
plane shearing traction by S0"h# and S2"h#\ the gap by `"h# and the relative slip velocities in x0! and
x2!direction by V0"h# and V2"h#[ Then the boundary conditions may be written as

N"h# � S0"h# � S2"h# � 9 "09#

`"h# × 9 "00#

in the separation zones\

N"h# ³ 9\ S1
0"h#¦S1

2"h# � ð fkN"h#Ł1 "01#

`"h# � 9\
V0"h#
S0"h#

�
V2"h#
S2"h#

\ sign "Vj# � sign "Sj# "02#

in the slip zones\ and

N"h# ³ 9\ zS1
0"h#¦S1

2"h# ³ fs=N"h#= "03#

`"h# � 9\ V0"h# � V2"h# � 9 "04#

in the stick zones[ It is convenient in the subsequent analysis to replace the condition `"h# � 9 in
eqns "02# and "04# with the weaker condition

V1"h# � ¾̀"h# � 9 "05#

and to make special consideration ensuring that the gap indeed vanishes in the slip and stick zones[
V1"h# is nothing but the opening velocity in the separation zones[

As in Part I\ we construct the solution by adding the corrective solution "u¹i\ s¹ ij# to the results
for the welded interface problem "ui\ sij#[ Then the interface traction\ the opening velocity and the
relative slip velocities can be expressed as

N"h# � −p9¦ðs"9#
11¦s"0#

11¦s"1#
11¦s¹ "0#

11¦s¹ "1#
11Łx1�9 � −p9¦ðs"2#

11¦s"3#
11¦s¹ "2#

11¦s¹ "3#
11Łx1�9 "06#

S0"h# � q9¦ðs"9#
01¦s"0#

01¦s"1#
01¦s¹ "0#

01¦s¹ "1#
01Łx1�9 � q9¦ðs"2#

01¦s"3#
01¦s¹ "2#

01¦s¹ "3#
01Łx1�9 "07#

S2"h# � t9¦ðs¹ "1?#
12 Łx1�9 � t9¦ðs¹ "3?#

12 Łx1�9 "08#

V1"h# � ðu¹¾ "2#
1 ¦u¹¾ "3#

1 −u¹¾ "0#
1 −u¹¾ "1#

1 Łx1�9 "19#

V0"h# � ðu¹¾ "2#
0 ¦u¹¾ "3#

0 −u¹¾ "0#
0 −u¹¾ "1#

0 Łx1�9 "10#

V2"h# � ðu¹¾ "3?#
2 −u¹¾ "1?#

2 Łx1�9[ "11#

The bilateral solution for the case of welded interface can be found in any book dealing with
elastic waves\ for instance\ the book by Achenbach "0862#\ or in the paper by Comninou and
Dundurs "0868#[ The normal and shearing traction transmitted by a perfectly bonded interface
can be obtained by a straight forward calculation as
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ðs11Łx1�9 � ðs"9#
11¦s"0#

11¦s"1#
11Łx1�9 � ðs"2#

11¦s"3#
11Łx1�9 � −Re"iA9 exp "ih##\ "12#

ðs10Łx1�9 � ðs"9#
10¦s"0#

10¦s"1#
10Łx1�9 � ðs"2#

10¦s"3#
10Łx1�9 � −Re"iB9 exp "ih## "13#

where A9 and B9 are quite complicated and not readily open to interpretation[ Comninou and
Dundurs presented the expressions for P!wave incidence[ They especially gave the results for the
identical materials "see Comninou and Dundurs\ 0868\ eqns "2[00#Ð"2[03##[

2[ Corrective solution

For the harmonic incident P or SV wave\ the corrective solution may be expressed as the
following Fourier series containing all higher frequencies]

u¹ "n# � "U0t\ 9\ U2t#¦Re $d"n# s
�

m�0

F"n#
m exp "imyn#%\ n � 0\ 1"1?#\2\ 3"3?#\ "14#

where U0 and U2 represent\ respectively\ the global sliding velocities in x0! and x2!direction due to
the in!plane and anti!plane shearing traction[ F"n#

m is a coe.cient to be determined and may be
written as F"n#

m � D"n#
m ¦iE"n#

m with D"n#
m and E"n#

m being real[
The requirement that the normal and shearing traction be continuous across the interface allows

us to write "see Part I for details\ Wang et al[\ 0877#

N"h# � −p9¦A9 sin h¦m s
�

m�0

m"Mm sin mh¦Lm cos mh# "15#

S0"h# � q9¦B9 sin h¦m s
�

m�0

m"Im sin mh¦Jm cos mh# "16#

S2"h# � t9¦mk1 cos u1 s
�

m�0

m"D"1?#
m sin mh¦E"1?#

m cos mh# "17#

V1"h# � cL s
�

m�0

mð"l0Im−l1Mm# sin mh¦"l0Jm−l1Lm# cos mhŁ "18#

V0"h# � U0−cL s
�

m�0

mð"l2Im¦l0Mm# sin mh¦"l2Jm¦l0Lm# cos mhŁ "29#

V2"h# � U2−k1cTb s
�

m�0

m"D"1?#
m sin mh¦E"1?#

m cos mh#\ "20#

where

b � 0¦
gT cos u1

G cos u3

"Im\ Jm# � k0 sin 1u0"D"0#
m \ E"0#

m #¦k1 cos 1u1"D"1#
m \ E"1#

m #

"Mm\ Lm# � −k1k cos 1u1"D"0#
m \ E"0#

m #¦k1 sin 1u1"D"1#
m \ E"1#

m #\
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and G\ gT\ k\ lj " j � 0\ 1\ 2# are given in Comninou and Dundurs "0868#[ It follows from eqns "18#Ð
"20# that

"U0\ 9\ U2# �
0
1p g

p

−p

"V0"j#\ V1"j#\ V2"j## dj "21#

"l2Im¦l0Mm\ l2Jm¦l0Lm# �
−0

pcLm g
p

−p

V0"j# "sin mj\ cos mj# dj "22#

"l0Im−l1Mm\ l0Jm−l1Lm# �
−0

pcLm g
p

−p

V1"j#"sin mj\ cos mj# dj "23#

"D"1?#
m \ E"1?#

m # �
−0

pk1cTbm g
p

−p

V2"j#"sin mj\ cos mj# dj[ "24#

Then the interface traction N"h#\ S0"h# and S2"h# may be expressed as

N"h# � −p9¦A9 sin h¦A96
l0

l1

b−0ðUÞ0−VÞ0"h#Ł−
l2

l1

VÞ1"h#7 "25#

S0"h# � q9¦B9 sin h¦B96ðUÞ0−VÞ0"h#Ł¦
l0

l1

bVÞ1"h#7 "26#

S2"h# � t9¦aB9ðUÞ2−VÞ2"h#Ł\ "27#

where we have denoted a � akb−0 cos u1\ b � A9:B9 and

"VÞ0\ VÞ1\ VÞ2\ UÞ0\UÞ2# �
mB−0

9

cLa
"V0\ b−0V1\ V2\ U0\ U2#\ "28#

with a � "l1
0:l1¦l2#[

Considering the boundary conditions in separation zones\ eqn "09#\ we have

VÞ1"h# � −a−0"l1p9:A9¦l0b
−0q9:B9#¦a−0"l1−l0b

−0# sin h "39#

UÞ0−VÞ0"h# � a−0"l0bp9:A9−l2q9:B9#−a−0"l2¦l0b# sin h "30#

UÞ2−VÞ2"h# � −a−0t9:B9[ "31#

The gap can be calculated by

`"h# � −
aA9

mk0 gVÞ1"h# dh �
A9

mk0

ð"l1p9:A9¦l0b
−0q9:B9#h¦"l1−l0b

−0# cos h−LŁ\ "32#

where L is a constant which can be determined by the fact that the gap vanishes at both ends of
the separation zone[ If we denote the separation zone as "d0\ d1#\ L is given by
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L � "l1p9:A9¦l0b
−0q9:B9#d0¦"l1−l0b

−0# cos d0

� "l1p9:A9¦l0b
−0q9:B9#d1¦"l1−l0b

−0# cos d1[ "33#

It is noted that the gap given by eqn "32# is independent of the induced anti!plane waves and is
exactly the same as that for t9 � 9 "see eqn "4[0# of Comninou and Dundurs\ 0868#[ Furthermore\
one can verify that the interface normal traction N"h# in the present case is of the same form as
that of Comninou and Dundurs "0868# although the values of UÞ0 and VÞ0"h# in these two situations
are di}erent[ Therefore we believe that the separation zone "d0\ d1# may be determined in the way
developed by Comninou and Dundurs "0866\ 0868#[ Make A9 positive by adjusting the sign of C9[
Comninou and Dundurs found that\ when

l1p9:A9¦l0b
−0q9:B9 × 9\ "34#

the gap opens smoothly at the leading edge\ d1\ which is determined by

sin d1 �
l1p9:A9¦l0b

−0q9:B9

l1−l0b
−0

\ d1 ×
p

1
[ "35#

At the trailing edge\ d0\ the gap closes discontinuously[ d0 can be obtained from eqn "33#[ If eqn
"34# is violated\ the behavior of the two edges interchange[ In this case\

sin d0 �
l1p9:A9¦l0b

−0q9:B9

l1−l0b
−0

\ d0 ³
p

1
\ "36#

and d1 can be calculated from eqn "33#[
We anticipate that the above results given by Comninou and Dundurs "0868# for t9 � 9 are valid

in the presence of t9[ Of course\ the real separation zones should be determined to ensure N"h# ³ 9
in slip and stick zones and `"h# × 9 in separation zones[ An example will be given afterwards to
demonstrate the procedure determining the separation of the interface[

Next we consider the solution in the slip zones[ Substitution of eqns "25#Ð"27# into the boundary
conditions "01# and "02# yields

"q9:B9¦sin h¦ðUÞ0−VÞ0"h#Ł#1¦"t9:B9¦aðUÞ2−VÞ2"h#Ł#1

�" fkb#16−p9:A9¦sin h¦
l0

l1

b−0ðUÞ0−VÞ0"h#Ł7
1

"37#

VÞ0"h#:"q9:B9¦sin h¦ðUÞ0−VÞ0"h#Ł# � VÞ2"h#:"t9:B9¦aðUÞ2−VÞ2"h#Ł#[ "38#

In the stick zones\ we have

VÞ0"h# � VÞ2"h# � 9[ "49#

Moreover eqn "21# yields

"UÞ0\ UÞ2# �
0
1p g

p

−p

"VÞ0"h#\ VÞ2"h## dh[ "40#
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The remaining task is to determine the slip zones[ To this end\ we follow the procedure described
in Part I "Wang et al[\ 0877#[ Suppose "aj\ bj# is a slip zone[ The two edges satisfy

"t9:B9¦aUÞ2#1¦"q9:B9¦sin bj¦UÞ0#1 � " fsb#10−p9:A9¦sin bj¦
l0

l1

b−0UÞ01
1

"41#

"t9:B9¦aUÞ2#1¦"q9:B9¦sin aj¦UÞ0#1 � " fkb#10−p9:A9¦sin aj¦
l0

l1

b−0UÞ01
1

[ "42#

The extent and location of the real slip zones should be determined by consideration of inequality
in eqn "03#[

It should be noted that eqns "41# and "42# are coupled with eqns "30#\ "31# and "37#Ð"40#[ It is
almost impossible to obtain the analytic solution to the problem[ Thus\ to get numerical results\
the iterative method similar to that used in Part I will be used[ Numerical computations for
identical materials will be performed in detail afterwards[ Before further discussion of the problem\
it is worthwhile to examine some limiting situations[
"i# A9 � 9

In this limiting case\ the incident wave does not generate normal traction at the welded interface[
Then eqn "25# reduces to

N"h# � −p9¦B9

l0

l1

ðUÞ0−VÞ0"h#Ł[ "43#

Consequently\ the interface does not separate[ Only slip zones may take place\ where the following
relations should be satis_ed

"q9:B9¦sin h¦ðUÞ0−VÞ0"h#Ł#1¦"t9:B9¦aðUÞ2−VÞ2"h#Ł#1

� f 1
k6−p9:B9¦

l0

l1

ðUÞ0−VÞ0"h#Ł7
1

"44#

VÞ0"h#:"q9:B9¦sin h¦ðUÞ0−VÞ0"h#Ł � VÞ2"h#:"t9:B9¦aðUÞ2−VÞ2"h#Ł#[ "45#

The above two equations are\ respectively\ similar to eqns "32# and "33# in Part I "Wang et al[\
0887# and may be solved analogously[
"ii# B9 � 9

Introducing the nondimensionalized quantities

"V	0\ V	2\ U	0\ U	2# �
mA−0

9

cLa
"V0\ V2\ U0\ U2#\ "46#

and following the previous analysis\ one obtains\ in the separation zones\

VÞ1"h# � −a−0"l1p9:A9¦l0q9:A9#¦a−0l1 sin h "47#

U	0−V	0"h# � a−0"l0p9:A9−l2q9:A9#−a−0l0 sin h "48#
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U	2−V	2"h# � −a−0t9:A9[ "59#

The separation zones and the gaps can be determined as before[ In the slip zones\ we have

"q9:A9¦ðU	0−V	0"h#Ł#1¦"t9:A9¦aðU	2−V	2"h#Ł#1 � f 1
k6−p9:A9¦sin h¦

l0

l1

ðU	0−V	0"h#Ł7
1

"50#

V	0"h#:"q9:A9¦ðU	0−V	0"h#Ł# � V	2"h#:"t9:A9¦aðU	2−V	2"h#Ł#[ "51#

"iii# fk � fs � 9
The interface cannot undergo shearing traction in this case[ Therefore we have to set q9 � t9 � 9[

Then the present problem reduces to the problem of interaction between in!plane waves and a
smoothly contact interface "Comninou and Dundurs\ 0866#[
"iv# fk : �

It is clear that the local slip cannot take place in this case[ Thus when

b
l1p9:A9¦l0b

−0q9:B9

l1−l0b
−0 b− 0\ "52#

the interface is perfectly in contact\ otherwise the solids will separate locally and slide in a creeping
manner without local slip[ The creeping velocities may be calculated from eqns "30#\ "31# and "40#
as

UÞ0 �
a−0"d0−d1#"l0bp9:A9−l2q9:B9#¦a−0"cos d0−cos d1#"l2¦l0b#

1p−"d1−d0#
"53#

UÞ2 �
"d1−d0#a−0t9:B9

1p−"d1−d0#
[ "54#

3[ Energy partition and dissipation

We examine the power averaged over a wave length or a period of the incident wave\ which is
inputted to\ extracted from and dissipated at a thin slice of material containing the interface[

The power input of the applied in!plane and anti!plane shearing traction is given by eqn "43# in
Part I "Wang et al[\ 0887#\ whereas the input of the incident wave is

P9 � −
0
1p g

p

−p

ðs"9#
01u¾

"9#
0 ¦s"9#

11u¾
"9#
1 Ł dh[ "55#

For P!wave incidence\

P9 � 0
1
"l¦1m#C1

9k
1
LcL cos u9\ "56#

and for SV!wave incidence\



Y[!S[ Wan`\ G[!L[ Yu : International Journal of Solids and Structures 25 "0888# 3452Ð34753461

P9 � 0
1
mC1

9k
1
TcT cos u9[ "57#

The power extracted from the slice by the induced re~ected and refracted SH waves is

PSH
0 �

0
1p g

p

−p

s¹ "1?#
12 u¹¾ "1?#

2 dh\ PSH
1 � −

0
1p g

p

−p

s¹ "3?#
12 u¹¾ "3?#

2 dh\ "58#

and that of the re~ected and refracted in!plane waves "P and SV waves# is given by

PPSV
0 �

0
1p g

p

−p

ðs"0#
11¦s"1#

11¦s¹ "0#
11¦s¹ "1#

11Łðu¾ "0#
1 ¦u¾ "1#

1 ¦u¹¾ "0#
1 ¦u¹¾ "1#

1 Ł dh

¦
0
1p g

p

−p

ðd"0#
01¦s"1#

01¦s¹ "0#
01¦s¹ "1#

01Łðu¾ "0#
0 ¦u¾ "1#

0 ¦u¹¾ "0#
0 ¦u¹¾ "1#

0 Ł dh "69#

PPSV
1 � −

0
1p g

p

−p

ðs"2#
11¦s"3#

11¦s"2#
11¦s¹ "3#

11Łðu¾ "2#
1 ¦u¾ "3#

1 ¦u¹¾ "2#
1 ¦u¹¾ "3#

1 Ł dh

−
0
1p g

p

−p

ðs"2#
01¦s"3#

01¦s¹ "2#
01¦s¹ "3#

01Łðu¾ "2#
0 ¦u¾ "3#

0 ¦u¹¾ "2#
0 ¦u¹¾ "3#

0 Ł dh[ "60#

The power dissipated by friction at the interface can be divided into two parts[ One is due to
slip in the x0!direction caused by the interface shearing traction S0"h#\ another is due to slip in the
x2!direction caused by S2"h#[ They can be calculated by eqns "59# and "50# in Part I[ The energy
conservation relation as eqn "51# in Part I still holds here[

4[ Numerical example and discussion

As in Part I\ we will carry out computations for identical materials to give explicit exploration
to the re!polarization of elastic waves[ For simplicity\ we neglect the in!plane shearing traction
and the kinematic locking\ i[e[ q9 � 9 and fk � fs � f[

We _rst consider the solution in the separation zones[ The interface normal traction and the gap
in this case may be written as

N"h#:A9 � −p9:A9¦sin h−
l2

l1

VÞ1"h# "61#

`"h# �
l1A9

mk0
¹̀"h# �

l1A9

mk0

ðp9:A9h¦cos h−LÞŁ\ "62#

where

LÞ� p9:A9d0¦cos d0 � p9:A9d1¦cos d1[ "63#

It is seen that the normal traction N"h# in the slip and stick zones is identical to that for a welded
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Fig[ 1[ Sketch map of N"h#:A9 and ¹̀"h#[

interface[ The sketch maps of N"h#:A9 and ¹̀"h# are depicted in Fig[ 1 where "d0\ d1# represents a
separation zone[ The leading edge d1 is given by

d1 � p−arcsin "p9:A9#\ "64#

and the trailing edge d0 may be obtained from eqn "63#[ It can be easily veri_ed that the conditions\
`"h# × 9 for h $ "d0\ d1# and N"h# ³ 9 for h ( "d0\ d1#\ are all satis_ed[ If we locate the leading edge to
the left of d1\ say d?1 in Fig[ 1\ the normal traction N"h# × 9 in "d?1\ d1#[ On the other hand\ if one
locates the leading edge to the right of d1\ as indicated by dý1 in Fig[ 1\ the gap `"h# ³ 9 in "d1\ dý1#[
That is to say\ the interval "d0\ d1# is the only one separation zone that really exists in one
representative period[ It is noted that the separation zone\ the gap and the interface normal traction
depend upon only one parameter\ p9:A9[ When p9:A9 × 0\ the solids cannot separate[ The above
result is identical to that for the case of t9 � 9 "the case of no re!polarization involved\ see
Comninou and Dundurs\ 0868#\ and also to that for a smoothly contact interface "Comninou and
Dundurs\ 0866#[ The velocities VÞ0"h# and VÞ2"h# in the separation zone are given by

VÞ0"h# � UÞ0 sin h\ VÞ2"h# � UÞ2¦a−0t9:B9\ h $ "d0\ d1# "65#

where UÞ0 and UÞ2 are unknown and will be determined afterwards[
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Now we turn to the slip zones[ The interface shearing traction may be written as

S0"h#:B9 � sin h¦ðUÞ0−VÞ0"h#Ł "66#

S2"h#:B9 � t9:B9¦aðUÞ2−VÞ2"h#Ł[ "67#

From eqns "41# and "42#\ we have the following relations that the edges of the slip zone should
satisfy]
sin bj � sin aj

�
−UÞ0−" fb#1p9:A92z" fb#1"UÞ0¦p9:A9#1−ð0−" fb#1Ł"aUÞ2¦t9:B9#1

0−" fb#1
, U2 "68#

for fb � 0\ and

sin bj � sin aj �
0
1

"p9:A9#1−UÞ1
0−"t9:B9¦aUÞ2#1

UÞ0¦p9:A9

, U "79#

for fb � 0[ To determine the number of the slip zones and the values of "aj\ bj#\ it is necessary to
anticipate the possible arrangements of the separation\ slip and stick zones[ We _rst consider the
case without separation[ One may note that the value of N"h# reaches the minimum at h � p:1 and
the maximum at h � −p:1\ while the interface shearing traction zS1

0"h#¦S1
2"h# reaches the peak

values with di}erent directions at h � 2p:1[ Therefore\ if the shearing traction is su.ciently
strong\ local slip will take place near h � p:1[ Denote this slip zone as "a1\ b1#\ see Fig[ 2a[ If the
friction coe.cient f is small enough and the pressure is not too strong\ a local slip may occur near
h � −p:1[ This slip zone is denoted by "a0\ b0# as shown in Fig[ 2b[ The slip zone "a1\ b1# may grow

Fig[ 2[ Possible arrangement of the separation\ slip and stick zones[
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beyond "9\ p#\ as demonstrated in Fig[ 2c\ d[ Next we discuss the case in presence of separation[ It
is seen from eqn "61# that N"d1# � 9\ but that the shearing traction does not necessarily vanish at
h � d1[ Consequently\ there must be a slip zone ahead of the separation zone as illustrated in Fig[
2e[ This slip zone is denoted by "d1\ b1# where d1 ³ p and b1 may locate beyond p "see Fig[ 2f#[
However\ there is not necessarily a slip zone connecting with the trailing edge of the separation
zone[ If there is\ we denote it by "a1\ d0#\ as in Fig[ 2g\ h[ As in the case without separation\ another
slip zone "a0\ b0#\ may exist near h � −p:1\ see Fig[ 2i\ j\ k\ l[ This slip zone will connect with the
separation zone if d0 reaches b0[ If the separation zone is so big that the trailing edge exceeds a0\
there is no slip zone behind the separation zone[

Based on the above analysis\ eqn "68# yields

a1 � p−b1 � arcsin U¦\ fb � 0 "70#

b0 � −p−a0 � arcsin U−\ fb � 0 "71#

with restriction of b0 ³ a1[ When d0 ¾ a1\ the slip zone\ "a1\ d0#\ behind the separation zone disap!
pears[ When d0 ¾ a0\ both slip zones\ "a0\ b0# and "a1\ d0#\ disappear[ If d0 falls between b0 and a1\
"a0\ d0# is a slip zone[ For fb � 0\ eqn "79# gives

a1 � p−b1 � arcsin U[ "72#

That is\ the slip zone "a0\ b0# does not exist in this situation[ The above three equations cannot
yield proper real values in some cases[ These special situations include]

"i# When U¦ × 0 "or U × 0#\ i[e[ when

p9:A9 × 0¦=fb=−0 z0¦"t9:B9#1 × 0\ "73#

there is no slip zone and\ of course\ no separation zone[ The interface is welded[
"ii# When U¦ ¾ 0 "or U ¾ 0#\ the stick zones disappear[ Then the whole interface is in slipping

with possible separation zones[
"iii# When U− ¾ −0\ the slip zone\ "a0\ b0#\ disappears[
"iv# When the radicand in U2 is equal to zero\ we have U¦ � U−\ that is\ a1 � b0[

This means that the two slip zones are just connected\ and that there is no stick zone on the
interface[ When the radicand is negative\ eqns "70# and "71# cannot yield correct solutions any
more\ and the whole interface is in slipping without separation[

After determining the slip zones\ we calculate the velocities therein[ Equation "38# gives

VÞ2"h# �
t9:B9¦aUÞ2

sin h¦UÞ0¦"a−0#VÞ0"h#
VÞ0"h#\ "74#

which when substituted into eqn "37# yields a quartic equation

VÞ3
0"h#¦b¹VÞ2

0"h#¦c¹VÞ1
0"h#¦d¹VÞ0"h#¦e¹ � 9\ "75#

with

b¹ � 1"1−a#" sin h¦UÞ0#:"a−0#

c¹ � ð"a1−5a¦5#" sin h¦UÞ0#1
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−" fb#1"a−0#1"−p9:A9¦sin h#1¦"t9:A9¦aUÞ2#1Ł:"a−0#1

d¹ � 1" sin h¦UÞ0#ð"a−1#" sin h¦UÞ0#1

−" fb#1"a−0#"−p9:A9¦sin h#1−"t9:B9¦aUÞ2#1Ł:"a−0#1

e¹ � " sin h¦UÞ0#1ð" sin h¦UÞ0#1−" fb#1"−p9:A9¦sin h#1¦"t9:B9¦aUÞ2#1Ł:"a−0#1[

Equation "74# can be solved analytically by using Ferrari|s method "Kern and Kern\ 0863#[ Its
four roots are exactly the same as those of the following two quadratic equations

VÞ1
0"h#¦b½2VÞ0"h#¦c½2 � 9\ "76#

where

b½2 � 0
1
"b½2z7y¦b¹1−3c¹#\ c½2 � y2

b¹y−d¹

z7y¦b¹1−3c¹

and y is any real one of the three roots of the cubic equation

7y2−3c¹y1¦"1b¹d¹−7e¹#y¦e¹"3c¹−b¹1#−d¹1 � 9\ "77#

which can be solved analytically by using Cardano|s method "Kern and Kern\ 0863#[ For the case
of a � 0 eqn "74# reduces to a quadratic equation of which the two roots may be found easily[
Among the four or two roots of eqn "74# we should choose the real one which satis_es the condition
VÞ0"aj# � VÞ2"bj# � 9[

Now we can carry out the computation based on the above equations by the iterative procedure
described in Part I "Wang et al[\ 0887#[ The convergence was examined in that paper[ The
computation accuracy is kept at the level of 9[0)[

It can be seen that the solution of the problem depends on the four parameters] t9:B9\ p9:A9\ fb
and a\ where a"−0# involves the e}ects of Poisson ratio n and the incident angle u9^ and fb is a
parameter determining the di.culty of interface slip[ In the following computation\ the Poisson
ratio n is taken to be 9[14[ There is no critical angle for P!wave incidence[ The critical incident
angle for SV!wave incidence is ucr � sin−0 "0:k# � 24[153>[ In the present paper we only consider
P!wave incidence[

Figure 3 illustrates the curves determining the extent and location of slip and separation zones
for given p9:A9 and some selected values of t9:B9 with fb � 9[1 and u9 � 29>[ The dotted line
determines the separation zone which is independent of t9:B9\ fb and a[ The dashed line gives the
slip zone for t9 � 9\ the case considered by Comninou and Dundurs "0868#[ For a large value of
p9:A9 satisfying inequality "73#\ the interface is perfectly bonded[ By decreasing p9:A9 successively\
the slip zone "a1\ b1# near h � p:1 _rst appears[ Then the slip zone "a0\ b0# near h � −p:1 occurs
when the condition −0 ³ U− ³ 9 holds[ With p9:A9 approaching " fb#−0t9:B9\ the stick zone
becomes smaller and smaller and disappears at last[ The two slip zones "a0\ b0# and "a1\ b1#\ then
connect with each other[ What will happen once p9:A9 drops to the level of " fb#−0t9:B9< We will
answer this question afterwards[

An interesting phenomenon is observed for t9 � 9[ When p9:A9 is between 0[0 and 1[8\ there is
a slip zone near h � −p:1[ As p9:A9 drops to 0[0\ this slip zone disappears until p9:A9 � 9[1[ After
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Fig[ 3[ Extent and location of slip zones for p9:A9 and some selected values of t9:B9 with fb � 9[1\ u9 � 29>[

that it appears again with a very small area connecting with the trailing edge of the separation
zone[ No slip zone is found behind the separation zone when 9[1 ³ p9:A9 ³ 9[4[

Figure 4 shows the results for fb � 0\ where there is no slip zone near h � −p:1[ For smaller
values of t9:B9\ no slip takes place behind the separation zone when p9:A9 is below a certain value[
Comparing Figs 3 and 4\ one may _nd that bigger values of t9:B9 and:or smaller values of fb will
make the interface slip more easily[ The in~uence of the parameter fb on the local slip is shown in

Fig[ 4[ Extent and location of slip zones for p9:A9 and some selected values of t9:B9 with fb � 0\ u9 � 29>[
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Fig[ 5[ Extent and location of slip zones for p9:A9 and some selected values of fb with t9:B9 � 9[1\ u9 � 29>[

Fig[ 5 in detail for t9:b9 � 9[1 and u9 � 29>[ There is a slip zone near h � −p:1 for smaller values
of fb[ With fb decreasing\ the local slip zones become smaller and smaller until all slip zones behind
the separation zone disappear[

Figure 6 demonstrates the e}ects of the parameter a on the local slip of the interface for
t9:B9 � 9[3 and fb � 9[1[ The solid\ dotted and dashed lines are\ respectively\ for a � 0[4\ 1[20734

Fig[ 6[ E}ect of parameter a on the extent and location slip zones\ t9:B9 � 9[3\ fb � 9[1[



Y[!S[ Wan`\ G[!L[ Yu : International Journal of Solids and Structures 25 "0888# 3452Ð3475 3468

and 0[96225 "or equivalently for u9 � 59\ 64 and 29> when the Poisson ratio n � 9[14#[ Only slight
di}erences between lines are observed[

The normalized global sliding velocities\ U0 and U2\ are plotted against p9:A9 in Fig[ 7 for
di}erent values of t9:B9 with fb � 9[1 and u9 � 29>[ The dashed line gives the results for t9 � 9[
The e}ects of the parameter fb are shown in Fig[ 8 for t9:B9 � 9[3 and u9 � 29>[ The dashed lines
correspond to fb : �[ In this case the local slip cannot take place\ and the solids move just like a
worm creeps[ It is shown in Figs 7 and 8 that U2 increases rapidly to in_nity\ while U0 to a _nite
value as p9:A9 approaches " fb#−0t9:B9[ Indeed\ one may _nd the solution in this limiting
situation[ The relative slip velocities in the separation zones are given by eqn "65#[ Equation "37#
yields

VÞ2"h# � UÞ2¦a−0fb sin h\ VÞ0 � UÞ0¦sin h "78#

in the slip zones[ Considering eqn "63#\ one can verify that the velocities given by eqns "72# and
"85# satisfy eqn "40#[ Equation "38# requires

UÞ2 �
0
1p g

p

−p

VÞ2"h# dh � �\ "89#

that is\ the collapse slipping happens in this case[ Unlike in Part I\ VÞ2"h# in the present case\ though
in_nitely large\ is not a constant due to the nonhomogenous distribution of normal traction along
the interface[ The global sliding velocity in the x0!direction\ U0\ cannot be calculated directly[ It
should be derived by a limiting procedure[ The interface can not transfer in!plane shear motion
any more in this limiting case because the in!plane shearing traction on the interface vanishes[
However\ the normal motion can be transmitted across the interface[

Figure 09 illustrates the distribution of the interface traction\ gaps\ relative slip velocities in one
representative period "−p\ p# for t9:B9 � 9[0\ fb � 9[1\ u9 � 29>[ The dotted\ solid\ dashed and
dotÐdashed lines are\ respectively\ for p9:A9 � 9[5\ 9[8\ 1[9 and 2[4[ Discontinuities in the interface
traction and the relative slip velocities are observed at the trailing edge of the separation zone[ The
curves are continuous but not smooth at the leading edge[ For smaller values of p9:A9\ a slip zone
appears near h � −p:1[ This slip zone is relatively small and the slip velocities therein in the x0!
direction are negative "see the dotted\ solid and dashed lines#[ With p9:A9 decreasing\ the slip and
separation zones becomes larger until the two slip zones connect with each other so that there is
no stick zone at the interface "see the dotted lines#[ All quantities except S0"h# increase with p9:A9

decreasing[ As p9:A9 approaches " fb#−0t9:B9\ S0"h# becomes smaller and smaller and _nally vanishes
as we have indicated before[ It is noted that solid\ dashed\ dotÐdashed lines correspond\ respectively\
to the cases "j#\ "b# and "a# shown in Fig[ 2[

We next discuss the energy dissipation and partition at the interface[ For the particular example
considered in this section\ a straightforward calculation yields

PPSV
0 �

m

3pcLl16g
p

−p

V1
1"h# dh−g

p

−p

ðU0−V0"h#ŁV0"h# dh7\ "80#
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Fig[ 7[ Dependence of the global sliding "creep# velocities on p9:A9 for some selected values of t9:B9 with fb � 9[1\
u9 � 29>[
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Fig[ 8[ Dependence of the global sliding "creep# velocities on p9:A9 for some selected values of fb with t9:B9 � 9[3\
u9 � 29>[
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Fig[ 09[ Distributions of interface traction "a#\ gaps and relative slip velocities "b# for di}erent values of p9:A9 with
t9:B9 � 9[0\ fb � 9[1\ u9 � 29>[

PPSV
1 � −

0
1p g

p

−p$A9 sin h−
m

cLl1

V1"h#%$C9kLcL cos u9 sin h−
V1"h#

1 % dh

−
0
1p g

p

−p6B9 sin h¦
m

cLl2

ðU0−V0"h#Ł7$C9kLcL sin u9 sin h−
V0"h#

1 % dh\ "81#

Pd0 �
0
1p g

p

−p6B9 sin h¦
m

cLl2

ðU0−V0"h#Ł7V0"h# dh\ "82#
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PSH
0 � PSH

1 � −
m cos u1

7pcT g
p

−p

ðU2−V2"h#ŁV2"h# dh\ "83#

Pd2 �
0
1p g

p

−p6t9¦
m cos u1

1cT

ðU2−V2"h#Ł7V2"h# dh[ "84#

It can be veri_ed that

Pt � PSH
0 ¦PSH

1 ¦Pd2[ "85#

Consequently\ we have

P9 � PPSV
0 ¦PPSV

1 ¦Pd0[ "86#

That is to say\ part of the energy supplied by t9 is partitioned equally over the induced re~ected
and refracted anti!plane waves\ the rest is dissipated due to the frictional slip in the x2!direction[
The energy input of the incident wave is partially extracted by the re~ected and refracted in!plane
waves\ and partially absorbed by friction due to the slip in the x0!direction[

The power ratios ""PPSV
0 ¦PPSV

1 #:P9\ Pd0:P9\ Pt:P9\ "PSH
0 ¦PSH

1 #:P9\ Pd2:P9# are plotted vs p9:A9 in
Fig[ 00 for t9:B9 � 9[1 and in Fig[ 01 for t9:B9 � 9[0 with other parameters being fb � 9[1 and
u9 � 29>[ The results for re~ected "PPSV

0 :P9# and the refracted "PPSV
1 :P9# in!plane waves are also

shown by dashed lines[ The power extracted by the induced waves is very small[ Most of the power
supplied by t9 is absorbed by friction[ As p9:A9 : " fb#−0t9\ both Pt and Pd2 become in_nitely large\
and the power carried by the induced waves "PSH

0 ¦PSH
1 # reaches a peak value[ Therefore the

induced waves are the strongest when catastrophic slip takes place[ Also in this limiting situation\
most of the power input of the incident wave is extracted by the re~ected and refracted in!plane
waves[ The dissipated power Pd0 is very small but not zero[ All these facts are quite di}erent from
those for SH!wave incidence "Wang et al[\ 0887#[ It is worth noticing that\ when the interface
begins to separate\ the power extracted by the re~ected in!plane waves increases rapidly and that
extracted by the refracted waves decreases rapidly "see Fig[ 01a#[ This is understood by considering
that the newly!generated free surface re~ects the waves totally[ For the case of no separation most
power input is transmitted across the interface[ Turns on the curves are observed at the points
indicated by triangles in the _gures[ These points correspond to the moment when the stick zones
disappear[

5[ Concluding remarks

In this two!part paper\ we examine the re!polarization of elastic waves at a frictional contact
interface between two elastic solids loaded by both in!plane and anti!plane shearing traction[ For
the case of SH wave incidence which involves no separation\ the in!plane waves are induced due
to the local slip of the interface[ For P or SV wave incidence\ the anti!plane waves are induced by
the local slip with possible separation which is uncoupled with anti!plane motion[ The problem is
formulated in a general sense[ A method to obtain _nal results is suggested[ Special examples for
identical material are computed and discussed in detail[ The results show that the induced waves
have signi_cant e}ects on the local slip although they only carry a small part of the energy input[
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Fig[ 00[ Energy partition and dissipation for t9:B9 � 9[1\ fb � 9[1\ u9 � 29>[
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Fig[ 01[ Energy partition and dissipation for t9:B9 � 9[0\ fb � 9[1\ u9 � 29>[
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The Coulomb friction model is adopted in this series paper[ However\ the method can be applied
in situations involving other nonlinear friction models such as Loeb friction "Loeb\ 0850#\ Fo�rtsch
friction "Fo�rtsch\ 0845#\ etc[ The paper does not consider the case of super!critical angle incidence[
In this situation\ one may _nd that the problem can be cast to a set of nonlinear integral equations
which are quite di.cult to solve "cf Comninou and Dundurs\ 0867 and Comninou et al[\ 0868 for
the cases without re!polarization#[

We argue that the re!polarization is a common phenomenon in interaction between elastic waves
and a frictional contact interface[ As we have known\ a wave propagating in a linear homogenous
isotropic medium can be generally represented as superposition of P\ SV and SH waves[ When the
boundary conditions are linear\ these three types of waves can be treated separately[ But for the
frictional interface considered here\ the three waves are coupled with each other[ They are all re!
polarized at the interface when local slip takes place[ Because the {apparent velocities| associated
with the three waves are di}erent\ we cannot solve the problem in the moving coordinate system
as we have done in the present paper[ The problem is still open and needs to be explored[
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